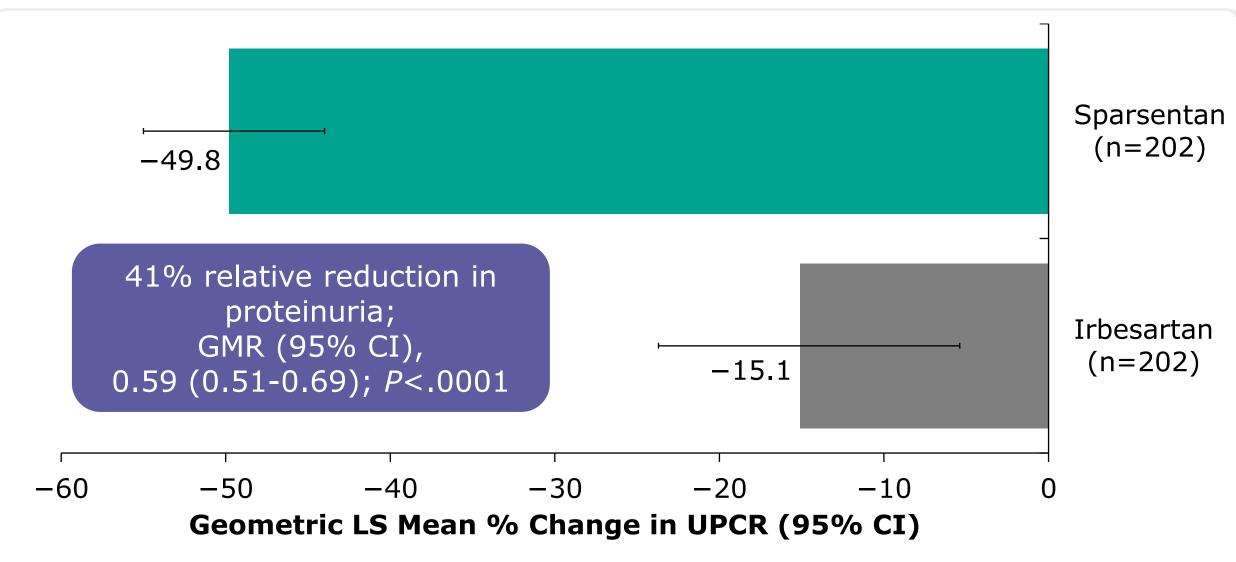
Sparsentan Receptor Occupancy Modeling, Clinical Actions, and Safety


Bruce Hendry, Donald Kohan, Rob Geletka, Celia Jenkinson, Shang-Chiung Chen, Patricia W. Bedard

¹Travere Therapeutics, Inc., San Diego, CA, USA; ²University of Utah Health, Salt Lake City, UT, USA

In PROTECT, sparsentan reduced proteinuria vs active comparator in patients with IgAN with minimal changes in fluid status^{1,6}

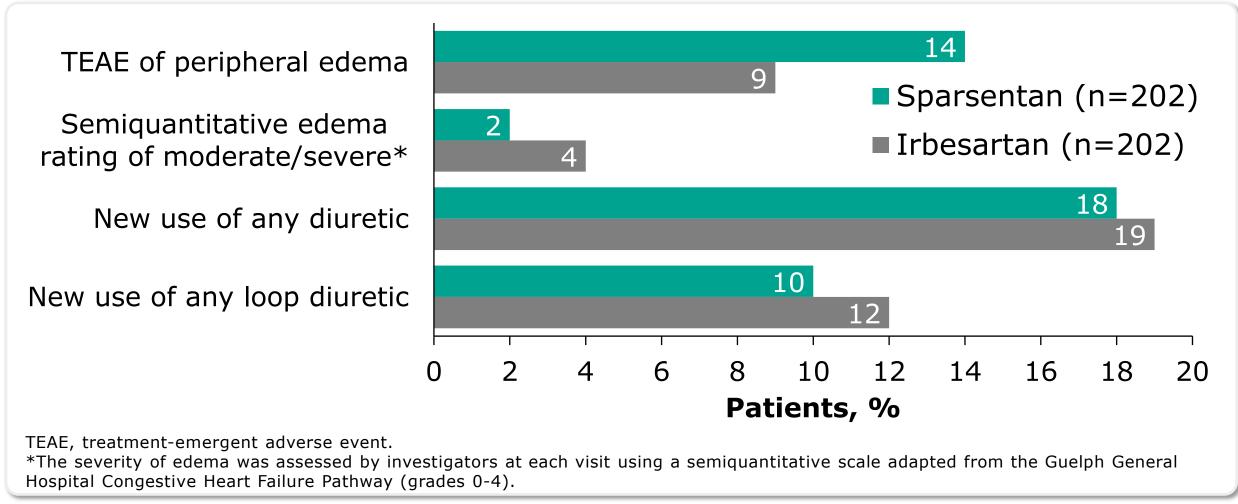

• At week 36, the percent reduction in UPCR from baseline was significantly greater with sparsentan compared with irbesartan (Figure 1)

Figure 1. Percent Change in UPCR* From Baseline With Sparsentan vs Irbesartan at Week 36 in PROTECT¹

- The incidence of TEAEs of peripheral edema was slightly higher with sparsentan but still low overall (Figure 2). Most cases of edema were mild, and no cases of severe edema occurred. There were no treatment-related fluid retention serious AEs or cases of heart failure
- Diuretics were initiated in a similar proportion of participants receiving sparsentan and irbesartan (Figure 2)
- These findings were consistent with results from the phase 3 DUPLEX trial in focal segmental glomerulosclerosis where no serious cases of peripheral edema were reported with sparsentan⁷

Figure 2. Peripheral Edema and Diuretic Use in PROTECT^{1,6}

AT₁R occupancy always exceeds ET_AR occupancy with sparsentan

- Sparsentan human receptor affinities are reported in Table 1
- Steady-state PK parameters calculated using population PK values for sparsentan 400 mg in the PROTECT study are reported in **Table 2**
- Examining the full 24-hour period, sparsentan AT₁R occupancy (>95%) consistently exceeds ET_AR occupancy (>60% and <90%) (Figure 3)
- Examining the full 24-hour period, sparsentan ET_AR occupancy (>60% and <90%) consistently exceeds ET_RR occupancy (<2%) (Figure 4)

99

Table 1. Sparsentan Endothelin and Angiotensin Receptor Affinities Steady State

Receptor target

Ki for AT₁R, nM

Ki for AT₂R, nM

Ki for ET_AR, nM

Ki for ET_BR, nM

Protein binding, %

	Steady-state parameter*		
0.36	C _{max} , ng/mL	5936	
190	C _{min} , ng/mL	1266	
12.8	t _{1/2} , hours	9.6	
6582	AUC, ng·h/mL	80000	
99	AUC, area under the curve; C, maximum	AUC, area under the curve; C _{max} , maximum plasma concentration;	

Table 2. Sparsentan PK at

 AT_1R , angiotensin II receptor type 1; AT_2R , angiotensin II receptor type nephropathy; PK, pharmacokinetics; t₁₆, half-life. 2; ET_AR, endothelin receptor type A; ET_BR, endothelin receptor type B;

Figure 3. Sparsentan AT₁R and ET_AR Occupancies (Right Axis) and Steady-State Concentration* (Left Axis) Over 24 Hours for a Single **Daily 400-mg Oral Dose in PROTECT**

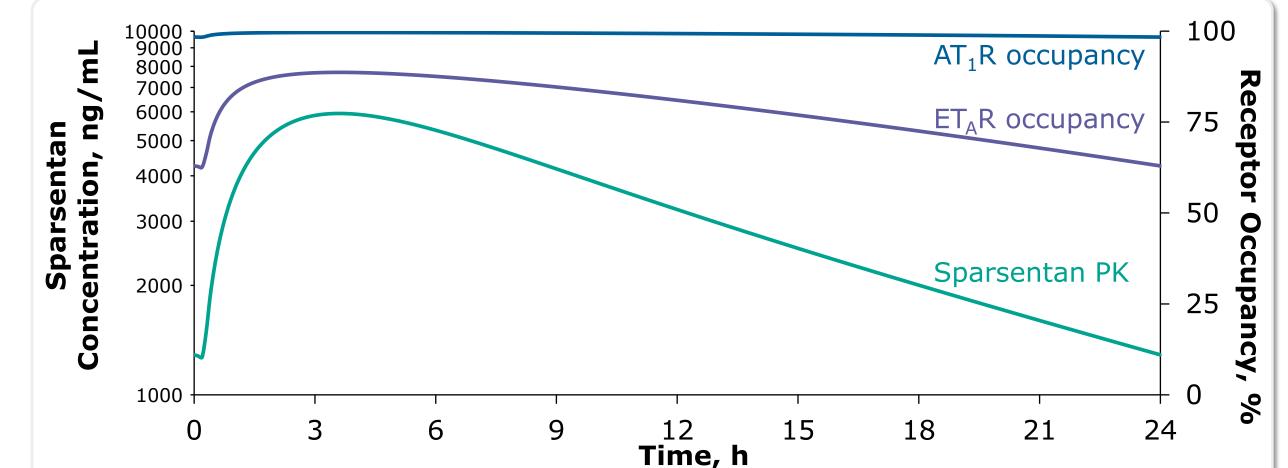
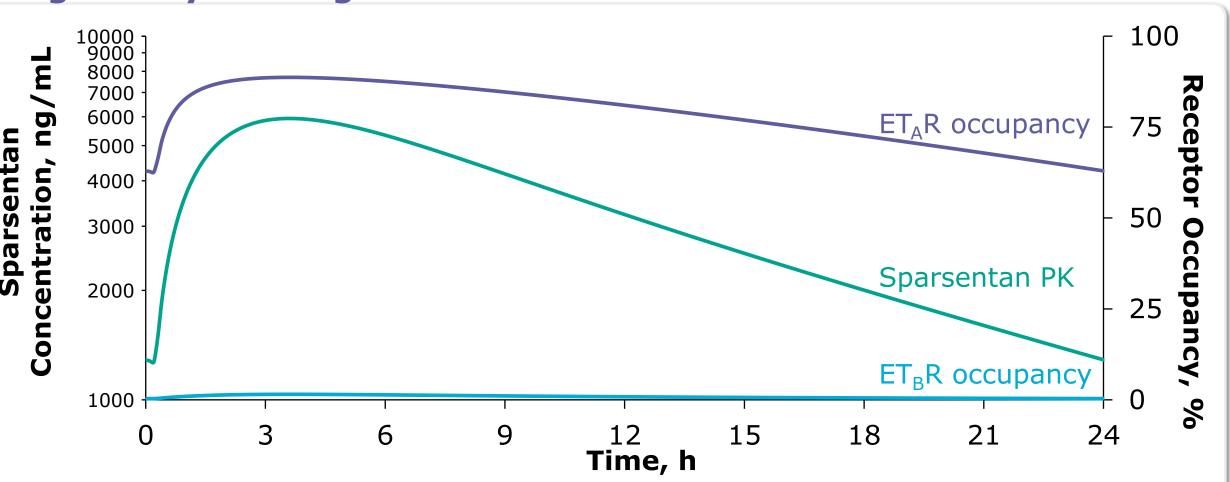



Figure 4. Sparsentan ET_AR and ET_BR Occupancies (Right Axis)

and Steady-State Concentration* (Left Axis) Over 24 Hours for a **Single Daily 400-mg Oral Dose in PROTECT**

 ET_AR , endothelin receptor type A; ET_BR , endothelin receptor type B; IgAN, immunoglobulin A nephropathy; PK, pharmacokinetics. *PK data are based on population PK model prediction for a patient with IgAN.

In the PROTECT study, sparsentan, which targets both the endothelin receptor type A (ET_AR) and angiotensin II receptor type 1 (AT_1R), reduced proteinuria vs active comparator in patients with immunoglobulin A nephropathy (IgAN) with minimal changes in fluid status¹

GMR, geometric mean ratio; LS, least squares; UPCR, urine protein-to-creatinine ratio.

*UPCR is based on 24-hour urine samples.

- This contrasts with greater fluid retention, including heart failure hospitalization, in studies using agents targeting ET_AR alone.²⁻⁴ This may relate to differences in comorbidities; however, aspects of dual receptor binding by sparsentan may also be a factor
- Since ET_AR blockers favor fluid retention⁵ while AT₁R blockers may promote fluid excretion, continual consistent blockade of AT₁R during ET₄R blockade may help maintain normal fluid
- The pharmacokinetic (PK) properties of sparsentan were used to estimate diurnal changes in receptor occupancy at steady state in the PROTECT study

• PROTECT (NCT03762850) is an international, randomized, double-blind, active-controlled study being conducted in 134 clinical practice sites in 18 countries

- The study examines sparsentan vs irbesartan in adults (aged ≥18 years) with biopsy-proven IgAN who had proteinuria of ≥1.0 g/day despite maximized renin-angiotensin-system inhibition for ≥12 weeks
- Participants were randomly assigned 1:1 to receive sparsentan, 400 mg once daily, or irbesartan, 300 mg once daily, stratified by estimated glomerular filtration rate (eGFR) at screening (30 to <60 vs ≈60 mL/min/1.73 m²) and urine protein excretion at screening $(\leq 1.75 \text{ vs} > 1.75 \text{ g/day})$
- The primary efficacy endpoint was change in urine protein-to-creatinine ratio (UPCR), based on a 24-hour urine sample, from baseline to week 36 assessed using a mixed model for repeated measures
- Treatment-emergent adverse events (TEAEs) were safety endpoints
- All endpoints were examined in all participants who received ≥1 dose of randomized treatment
- Receptor affinities (inhibitory constant [Ki]) of sparsentan for ET_AR , endothelin receptor type B (ET_BR), AT_1R , and angiotensin II receptor type 2 (AT₂R) were determined using radioligand binding assays
- Population PK modeling of sparsentan was used to derive 24-hour PK and receptor occupancy profiles of patients in PROTECT

Sparsentan exhibits strong antiproteinuric efficacy without associated clinically significant fluid overload events¹

- We hypothesize that this arises from the properties of sparsentan as a dual endothelin angiotensin receptor antagonist (DEARA)⁸⁻¹⁰
- When a drug solely targets ET_AR, on top of AT₁R blockade, periods of relatively unaccompanied ET_AR antagonism may occur, representing a risk for fluid retention. If AT₁R blockade consistently exceeds ET_AR antagonism, then this risk is minimized or avoided
- The presented receptor occupancy data from PROTECT are consistent with this hypothesis, showing that with sparsentan, ET₄R antagonism is substantial and always accompanied by full AT₁R occupancy

AT₁R occupancy always exceeds ET_AR occupancy with sparsentan; ET_BR occupancy with sparsentan is negligible

SA-P0276

CONCLUSIONS

In contrast, when a drug solely targets ET_AR, on top of AT₁R blockade, periods of relatively unaccompanied ET_△R antagonism may occur, representing a risk for fluid retention

This could partly explain the fluid retention seen with endothelin receptor antagonists and the minimal changes in fluid status seen with sparsentan

DISCLOSURES

BH, RG, CJ, S-CC, and PWB are employees of or other financial interest in Travere Therapeutics, Inc. **DK** received consulting fees from AstraZeneca, Chinook Therapeutics, and Travere Therapeutics, Inc. and honoraria from Chinook Therapeutics and Travere Therapeutics, Inc.

ACKNOWLEDGMENTS

This study was funded by Travere Therapeutics, Inc. Medical writing support was provided by Lise Barnard, PhD, and Chris Edwards, PhD, CMPP, of Articulate Science, a part of Nucleus Global, an Inizio Company and was funded by Travere Therapeutics, Inc.

REFERENCES

1. Heerspink HJL, et al. Lancet. 2023;401 (10388):1584-1594. **2.** Kohan DE, et al. *J Am* Soc Nephrol. 2011;22(4):763-772. 3. Mann JF, et al. J Am Soc Nephrol. 2010;21(3):527-535. 4. Koomen JV, et al. Clin Pharmacol Ther. 2021;109(6):1631-1638. **5.** Stuart D, et al. *J* Pharmacol Exp Ther. 2013;346(2):182-189. **6.** Barratt J, et al. *Nephrol Dial Transplant*. 2023;38(suppl 1):gfad063a_4057. **7.** Travere Therapeutics, Inc. Data on file. 8. Trachtman H et al. Expert Opin Emerg Drugs. 2020;25(3):367-375. 9. Kowala MC, et al. J Pharmacol Exp Ther. 2004;309(1):275-284. **10.** Nagasawa H, et al. Nephrol Dial Transplant. 2022;37:183.

To obtain a PDF of this poster, please scan the Quick Response (QR) code.

No personal information is stored.

