Sparsentan vs Irbesartan in Patients With Immunoglobulin A Nephropathy (IgAN): Subgroup Analyses of 2-Year Results From the Pivotal Phase 3 PROTECT Trial

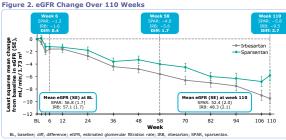
Jonathan Barratt,¹ Brad Rovin,² Edward Murphy,³ Radko Komers,⁴ Hernán Trimarchi,⁵ Vlado Perkovic,⁶ on behalf of the DUPRO Steering Committee and PROTECT investigators Department of Cardiovascular Sciences, University of Leicester, Leicester, UK; ²Division of Nephrology, Ohio State University Wexner Medical Center, Columbus, OH, USA; ³Biostatistics, Travere Therapeutics, Inc., San Diego, CA, USA; ⁴Clinical Development, Nephrology, Travere Therapeutics, Inc., San Diego, CA, USA; ⁵Nephrology Service, British Hospital of Buenos Aires, Buenos Aires, Argentina; ⁶Faculty of Medicine & Health, University of New South Wales, Sydney, NSW, Australia

- RESULTS
- A total of 404 patients were randomized to and received study drug (sparsentan, n=202; irbesartan, n=202)
- In the sparsentan group, 28 patients discontinued treatment (AE, n=19; patient decision, n=5; physician decision, n=0), and 174 (86.1%) completed treatment
- decision, n=5; physician decision, n=0), and 1/4 (86.1%) completed treatment In the irbesartan group, 4B patients discontinued treatment (AE, n=18; patient decision, n=21; physician decision, n=7), and 154 (76.2%) completed treatment More patients discontinued irbesartan than sparsentan treatment due to patient or physician decision; nearly all patients completed the double-blind study period (sparsentan, 98.0%; irbesartan, 94.1%)
- The majority of patients enrolled in PROTECT were at high risk of disease progression, with elevated proteinuria and reduced kidney function (Table 1)
- Table 1. Baseline Demographics and Clinical Characteristics

Table 1. baseline benographics and chincar characteristics			
	Sparsentan (n=202)	Irbesartan (n=202)	
Age at IgAN diagnosis, mean (SD), years	40.2 (13.4)	39.0 (12.4)	
Time from initial kidney biopsy to informed consent, median (IQR), years	4.0 (1.0-10.0)	4.0 (1.0-10.0)	
Male sex, n (%)	139 (69)	143 (71)	
Blood pressure, mean (SD), mm Hg			
Systolic	128.0 (14.4)	129.9 (12.4)	
Diastolic	81.6 (10.6)	83.2 (10.6)	
Maximum labeled ACEi or ARB dose at screening, n (%)	130 (64)	125 (62)	
eGFR, mean (SD), mL/min/1.73 m ²	56.8 (24.3)	57.1 (23.6)	
Subgroups: baseline proteinuria quartiles			
UPCR <0.80 g/g	57.3 (24.0)	61.9 (27.3)	
UPCR ≥0.80 to <1.25 g/g	60.6 (25.0)	59.3 (25.2)	
UPCR ≥1.25 to <1.80 g/g	55.9 (24.0)	55.1 (21.9)	
UPCR ≥1.80 g/g	53.6 (24.5)	52.1 (18.8)	
Urine protein excretion, median (IQR), g/day	1.8 (1.2-2.9)	1.8 (1.3-2.6)	
UPCR, median (IQR), g/g	1.3 (0.8-1.8)	1.2 (0.9-1.7)	
Hematuria, n (%)	111 (55)	114 (56)	

- XCEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; eGFR, estimated glo mmunoglobulin A nephropathy; UPCR, urine protein-to-creatinine ratio.
- Efficacy

60

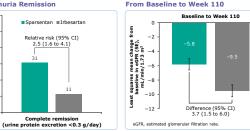

50

° 40 Patients, 30

20

10

- The 36-week interim primary analysis endpoint was met, with a 41% relative reduction in proteinuria (P<.0001)
- Significant proteinuria reduction was sustained over 110 weeks, with a 40% relative reduction in proteinuria at week 110
- Sparsentan preserves kidney function more than irbesartan (Figure 2)



More patients achieved complete proteinuria remission (<0.3 g/day) with sparsentan vs irbesartan (Figure 3)

Absolute change in eGFR from baseline to week 110 was -5.8 mL/min/1.73 m² for sparsentan vs -9.5 mL/min/1.73 m² for irbesartan (difference, 3.7 mL/min/1.73 m²)

(Figure 4) Figure 3. Patients Achieving Complete **Proteinuria Remission**

Relative risk (95% CI) 2.5 (1.6 to 4.1)

ETHODS

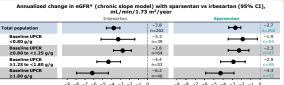
Σ

Figure 4. Absolute Change in eGFR

Subgroup analyses demonstrate a consistent treatment benefit across baseline urine protein-to-creatinine ratio subgroups in absolute eGFR change (Figure 5) and chronic eGFR slope (Figure 5)

Figure 5. Subgroup Analyses of Absolute Change in eGFR* by Baseline

Absolute LS mean (95% CI) change in eGFR* from baseline to week 110		Diff SPAR vs IRB, mL/min/1.73 m ²	Percent of diff vs IRB
Total population IRB, n=138; SPAR, n=159	⊢ ●−	3.7*	39%
Baseline UPCR <0.80 g/g IRB, n=30; SPAR, n=45	· • · · ·	1.7	31%
Baseline UPCR ≥0.80 to <1.25 g/g IRB, n=45; SPAR, n=40		2.6	36%
Baseline UPCR ≥1.25 to <1.80 g/g IRB, n=35; SPAR, n=39	· • • • • • • • • • • • • • • • • • • •	5.9	56%
Baseline UPCR ≥1.80 g/g IRB, n=28; SPAR, n=35	·•	5.1	36%


erence; eGFR, estimated glomerular fil ne ratio. *On-treatment eGFR. [†]P=.001

- Sparsentan is an orally active dual endothelin angiotensin receptor antagonist (DEARA) that reduces proteinuria and preserves estimated glomerular filtration rate (eGFR) in patients with IgAN-^{1,2} Sparsentan molecules hind individually to either endothelin type A (ET_AR) or angiotensin type 1 (AT_1R) receptors and inhibit intracellular signaling³
- In IgAN, the endothelin system is activated along with the renin-angiotensin-aldosterone system
- Both systems mediate kidney injury through multiple mechanisms, including inflammation and fibrosis
- Sparsentan has received accelerated approval in the US for treatment of patients with IgAN who are at risk of rapid disease progression⁴

Objective

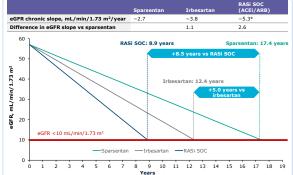
Test the efficacy and safety of sparsentan vs active control (irbesartan) in patients with IgAN, including across different levels of baseline proteinuria

Contact information: Jonathan Barratt, jb81@leicester.ac.uk

Sensitivity analyses confirm long-term kidney function preservation with sparsentan vs irbesartan (Figure 7)

Figure 7. Total eGFR Slope Sensitivity Analyses

eGFR, estimated glor

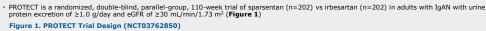

		in eGFR (total slope i asartan (95% CI), mL		/year	
Total population N=404		•			1.0 P=.058
ITT analysis n=404		••			1.2 P=.016*
Rescue analysis† n=404		••			1.0 P=.044*
Cystatin C n=404		·•			1.4 P=.010*
Day 1 as response variable n=404		••			1.0 P=.039*
	-1 Favors IRB	0 1 Favors SPAR	2	3	

eGFR, estimated glomerular filtration rate; IRB, irbesartan; ITT, intent-to-treat; SPAR *Nominal P values. †Rescue analysis excludes eGFR measurements after initiation of

- Fewer sparsentan-treated patients progressed to composite kidney failure endpoints of confirmed 40% or 50% eGFR reduction, end-stage kidney disease, or death vs irbesartan
- Patients initiated immunosuppressive therapy sooner and more frequently with irbesartan vs sparsentan

Improved eGFR slope suggests that sparsentan could delay the need for dialysis or kidney transplant (Figure 8)

Figure 8. Potential Long-Term Impact of Improved eGFR Slope


7 8 9 10 11 12 13 Years ****/ivtensin receptor blocker; eGFR, estimated glomerular filtration ra ***-4n4) reported in this study. anglotensin receptor blocker; esarr, esamator p lard of care. I on the mean eGFR of all patients (N=404) reported in this study. s reported in 5 clinical trials.²⁻⁹

Safety

- Sparsentan was well tolerated, with a consistent safety profile comparable to irbesartan $(\mbox{Table 2})$
- Peripheral edema was similar in both groups, with no increases in body weight Low incidence of alanine aminotransferase/aspartate aminotransferase of >3x upper limit of normal that was comparable with irbesartan; no cases of drug-induced liver injury with sparsentan

Table 2. Treatment-Emergent Adverse Events

Patients with TEAEs, n (%)	Sparsentan (n=202)	Irbesartan (n=202)
Any TEAEs	187 (93)	177 (88)
Most common TEAEs (≥10% of patients in either group)		
COVID-19	53 (26)	46 (23)
Hyperkalemia	32 (16)	26 (13)
Peripheral edema	31 (15)	24 (12)
Dizziness	30 (15)	13 (6)
Headache	27 (13)	26 (13)
Hypotension	26 (13)	8 (4)
Hypertension	22 (11)	28 (14)
Transaminase elevations	5 (2)	7 (3)
Serious TEAEs	75 (37)	71 (35)
Serious TEAEs in ≥5 patients in either group		
COVID-19	42 (21)	38 (19)
Chronic kidney disease	6 (3)	6 (3)
TEAEs leading to treatment discontinuation	21 (10)	18 (9)
TEAEs leading to death	0	1 (<1)

Maximized ACEi/ARB •≥12 weeks prior to scn •≥50% maximum appro Double-blind treatment ated to maximum labeled dose* 110 weeks, randomized 1:1 Titra 4 weeks post cessation of randomized treatment num approv Randomized (1:1) and eived study drug (N=40 lults (aged \geq 18 years) opsy-proven IgAN $i \geq 21.0 \ \alpha/day$ Study drug hdrawal period; resume SOC ACEi/ARB Biopsy-proven IgAN UPE ≥1.0 g/day eGFR ≥30 mL/min/1.73 m² Week 110 End of randomized treatment Day Week 36 Interim analy Week 114 End of double-ACEi/ARB (NO washout) Key Secondary Efficacy Endpoint eGFR slope: chronic (weeks 6-110) and total (day 1-week 110)

baseline to week 36

ulin A nephropathy: SOC, standard of care: UPCR, urine protein-to-creati enzyme inhibitor: ARB, and eCFP estimated clomer lar filtration rate: ToAN immun ACEB, anglotensin-converting enzyme inhibitor; ARB, anglotensin receptor blocker; eGFR, estimated glor UPE, urine protein excretion. *95% and 97% of patients titrated to maximum labeled dose of sparsentan and irbesartan, respectively

Poster WCN24-AB-847 TRAVERE

CONCLUSIONS

Sparsentan treatment causes a sustained reduction in proteinuria and a clear benefit in eGFR over 110 weeks

eGFR decline in proteinuria subaroups all favor sparsentan

Patients with IgAN treated with sparsentan over 2 years had one of the slowest annual rates of kidney function decline seen in phase 3 IgAN clinical trials

Sparsentan is well tolerated, with a consistent safety profile comparable to irbesartan

JISCLUSURES
B reports a research grant and consulting fees from
ravere Therapeutics, Inc. BR reports consulting fees
om Alexion Pharmaceuticals, Alpine Pharma, BioCryst harmaceuticals, Calliditas Therapeutics, Novartis, Q32
io, Omeros, Otsuka Pharmaceuticals, Travere
herapeutics, Inc., and Vera Therapeutics and has a
adership role at NephroNet, Lupus ABC/LRA, and Lupus
oundation of America. EM and RK are employees and
ockholders of Travere Therapeutics, Inc. HT reports
rants from AstraZeneca, Bayer, BloCryst
harmaceuticals, Calliditas Therapeutics, Chinook
herapeutics, Dimerix, George Clinical, Novartis, Omeros, tsuka Pharmaceuticals, and Vera Therapeutics; reports
onsulting fees from AstraZeneca, BioCryst
harmaceuticals, Calliditas Therapeutics, Chinook
herapeutics, Dimerix, George Clinical, Novartis, Omeros
ravere Therapeutics, Inc., and Vera Therapeutics;
ports honoraria from AstraZeneca, BioCryst
harmaceuticals, Calliditas Therapeutics, Chinook herapeutics, George Clinical, Novartis, and Travere
herapeutics, George Clinical, Novartis, and Travere herapeutics. Inc.: reports travel support from BioCryst
harmaceuticals, Calliditas Therapeutics, and Chinook
herapeutics; and serves as a member of a data safety
ionitoring or advisory board for AstraZeneca, BioCryst harmaceuticals, Calliditas Therapeutics, Chinook
herapeutics, Novartis, and Travere Therapeutics, Inc. P is an employee of UNSW Sydney and serves as a
pard director for St. Vincent's Health Australia and
everal medical research institutes; has led or served on
e steering committees of trials funded by AbbVie,
ayer, Boehringer Ingelheim, Chinook Therapeutics,
ilead Sciences, GSK, Janssen, Lilly, Novartis, Novo
ordisk, Otsuka Pharmaceuticals, Pfizer, Travere
herapeutics, Inc., and Tricida; and reports honoraria for
eering committee roles, scientific presentations, and/or dvisory board attendance from AbbVie, AstraZeneca,
ayer, Boehringer Ingelheim, Chinook Therapeutics, ilead Sciences, GSK, Janssen, Lilly, Merck, Mitsubishi
need Sciences, Cisri, Sunssen, Enry, Herek, Hieldssin

use - Harma, Mundipharma, Novartis, suka Pharmaceuticals, Pfizer, Travere 1 ... and Tricida

ACKNOWLEDGMENTS

REFERENCES

xpert Rev Clin Imn 2024. **4.** FILSPARI John Markon, Travere
S. Lafayette R, et al. Lancet
G. Lv J, et al. JAMA.
T. Wheeler DC, et al. Kidni

