Sparsentan As First-Line Treatment of Incident Patients With IgA Nephropathy (IgAN): Interim Analysis of the SPARTAN Trial

Chee Kay Cheung,¹ Stephanie Moody,² Neeraj Dhaun,³ Siân Griffin,⁴ Alexandra Howson,¹ Radko Komers,² Alex Mercer,⁵ Matthew Sayer,³ Smeeta Sinha,⁶ Lisa Willcocks,⁷ Jonathan Barratt¹

¹University of Leicester & Leicester General Hospital, Leicester, UK; ²Travere Therapeutics, Inc., San Diego, CA, USA; ³Royal Infirmary of Edinburgh, Edinburgh, UK; ⁴University Hospital of Wales, Cardiff, UK; ⁵JAMCO Pharma Consulting, Stockholm, Sweden; ⁶Salford Royal Hospital Northern Care Alliance NHS Foundation Trust, Salford, UK; ⁷Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK

To obtain a PDF of this oral, please scan the Quick Response (QR) code. No personal information is stored.

A visual summary of this presentation is accessible via the OR code.

- CKC has received consulting fees and research funding from Travere Therapeutics, Inc.
- SM is an employee and stockholder of Travere Therapeutics, Inc.
- ND and JB have received consulting fees and research funding from Travere Therapeutics, Inc.
- **SG** has received consulting fees from CSL Vifor and Alexion; honoraria from Bayer and Travere Therapeutics, Inc.; travel support from Alexion; and has been part of advisory boards for Emmes and ICON plc.
- RK is an employee and shareholder of Travere Therapeutics, Inc.
- AM has received consulting fees from Travere Therapeutics, Inc., Vera Therapeutics, and HI-Bio.
- **SS** has received research funding from Johnson and Johnson, AstraZeneca, CSL Vifor, and Sanofi Genzyme; consulting fees from Novartis, Bayer, Sanofi-Genzyme, Vifor Pharma, Boehringer Ingelheim, AstraZeneca, GSK, Sanifit, and Inozyme Pharma Inc.; honoraria from AstraZeneca, Menarini, Napp, CSL Vifor, GSK, Novartis, Bayer, Sanofi Genzyme, Chiesi, and Medscape; travel support from AstraZeneca, Novartis, and CSL Vifor; and is the National Clinical Director of Renal Medicine for NHS England.
- **LW** has received consulting fees from Travere Therapeutics, Inc., Novartis, Chinook, and Goldfinch Bio; honoraria from Travere Therapeutics, Inc., Novartis, and Otsuka; and has been part of advisory boards for Eledon Pharmaceuticals.
- AH and MS have no conflicts of interest.

 Sparsentan, a non-immunosuppressive novel dual endothelin and angiotensin receptor antagonist (DEARA), is approved in the US and the EU to treat adults with IgAN based on data from the Phase 3 PROTECT trial¹⁻⁴

Sparsentan targets glomerular injury and slows kidney function decline^{1,5}

EFFECTS:

Anti-inflammatory^{6-9*}

Anti-proliferative^{6,7,9*}

Anti-fibrotic^{8,9*}

Anti-proteinuric⁴

*These effects are based on pre-clinical animal modeling data.

Ang II, angiotensin II; AT₁R, angiotensin II type 1 receptor; ET-1, endothelin 1; ET_AR, endothelin-1 type A receptor.

1. FILSPARI (sparsentan). Prescribing Information. September 2024. Travere Therapeutics, Inc. San Diego, CA, USA; 2. FILSPARI (sparsentan). European Medicines Agency (EMA). https://www.ema.europa.eu/en/medicines/human/EPAR/filspari (Accessed October 2, 2024); 3. Heerspink HJL, et al. *Lancet.* 2023;401(10388):1584-1594; 4. Rovin BH, et al. *Lancet.* 2023;402(10417):2077-2090; 5. Kohan DE, et al. *Clin Sci.* 2024;138:645-6625; 6. Jenkinson C, et al. Poster presented at: ISN World Congress of Nephrology; April 12-15, 2019; Melbourne, Australia. SAT-010; 7. Reily C, et al. *Am J Physiol Renal Physiol.* 2024;326:F862-F875; 8. Nagasawa H, et al. *Nephrol Dial Transplant.* 2024;39:1494-1503; 9. Jenkinson C, et al. Presentation at: International Symposium on IgANephropathy: September 27-29, 2018; Buenos Aires, Argentina.

- In the PROTECT trial, sparsentan showed reduced proteinuria and longterm kidney function preservation in prevalent IgAN patients vs maximally titrated irbesartan^{1,2}
- The effect in newly diagnosed, RASi-naive patients remains unknown
- SPARTAN (NCT04663204) is a Phase 2, open-label, single-arm, multicenter trial investigating the safety, efficacy, and mechanistic actions of sparsentan as first-line therapy in patients newly diagnosed with IgAN³

Objective

 Here we report interim clinical findings over the first 24 weeks of treatment with sparsentan from SPARTAN

SPARTAN Study Design (NCT04663204)

The SPARTAN study is being conducted at 5 participating sites in the UK

Key Eligibility Criteria

- Age ≥18 years
- Biopsy-proven IgAN within ≤6 months
- Proteinuria ≥0.5 g/day
- eGFR ≥30 mL/min/1.73 m²
- No ACEIs/ARBs within ≤12 months
- No systemic IST within ≤6 months

Key Endpoints

- Safety
- Change in proteinuria from baseline
- Complete remission of proteinuria (<0.3 g/day)
- Change in GFR and BP from baseline

Demographics and Baseline Characteristics of Patients in the SPARTAN vs PROTECT Trials

		SPARTAN (N=12)	PROTECT ^{1,2} (N=402)
.	RASi use, %	0*	>99†
	IST use, %	O [‡]	5 [§]
<u></u>	Time from initial kidney biopsy to informed consent, median (IQR), years	0.25 (0.14-0.39)	4.0 (1.0-10.0)
	Age at informed consent, mean (SD), years	35.8 (12.2)	46.0 (12.44)
	Male sex, %	58	70
	White race, %	83	67
	UPE, median (IQR), g/day	1.7 (0.6-3.3)	1.8 (1.3-2.8)
	UPCR, median (IQR), g/g	1.3 (0.4-1.7)	1.2 (0.8-1.8)
	eGFR, mean (SD), mL/min/1.73 m²	70.2 (25.0)	56.9 (24.0)
	BP, mean (SD), mm Hg [¶] Systolic Diastolic	125 (10) 78 (10)	129 (14) 82 (11)
	Weight, mean (SD), kg	83.1 (24.7)	84.4 (19.8)

^{*}Eligibility criteria for SPARTAN did not allow ACEIs/ARBs use within ≤ 12 months. †At screening. ‡Eligibility criteria for SPARTAN did not allow systemic IST within ≤ 6 months. §For renal indication. ||n=11. ¶Office BP.

^{1.} Rovin BH, et al. *Lancet*. 2023;402(10417):2077-2090. 2. Data on file. Travere Therapeutics, Inc.

Proteinuria Change (UPCR) From Baseline*

 Proteinuria reductions were rapid (≈60% from baseline at week 4) and sustained over 24 weeks of sparsentan treatment

Proteinuria Per Individual Patient*

- Among the 5 patients with protein excretion of >2 g/day at baseline, 4 had proteinuria reductions of ≥75% at any time during the first 24 weeks of treatment
- 58% of patients (7/12) achieved complete remission (<0.3 g/day) at any time during the 24-week treatment period

Mean eGFR at Each Visit Over 24 Weeks*

Mean Office BP at Each Visit Over 24 Weeks*

 After an initial slight decrease, BP remained stable during the rest of the treatment period as measured by office and ambulatory BP

DBP, diastolic blood pressure; SBP, systolic blood pressure. *On-treatment analysis; 1 patient discontinued after week 6.

Mean Weight and Total Body Water Change From Baseline*

- There were no meaningful changes in body weight over 24 weeks
- Mean total body water change from baseline showed modest reductions during the treatment period

Mean (SD) change from	Week					
baseline	2	4	6	12	24	
n	12	11	12	11	11	
Weight, kg	-0.3 (0.7)	-0.2 (1.4)	0.3 (1.4)	0.1 (2.7)	-1.0 (3.3)	
Total body water, L [†]	_	_	-2.0 (7.2)	-2.0 (7.5)	-2.4 (7.4)	

^{*}On-treatment analysis; 1 patient discontinued after week 6. †Measured by bioimpedance spectroscopy.

Safety Over 24 Weeks of Treatment

- Sparsentan was generally well tolerated
- 1 patient permanently discontinued treatment due to hypotension after week 6

	Sparsentan (N=12)		
	n (%)		
Any AE	12 (100)		
Any serious AE*	1 (8)		
Most common AEs (>2 patients)			
Dizziness	6 (50)		
Urinary tract infection	3 (25)		
Dyspepsia	3 (25)		
Vomiting	3 (25)		

Urinary sCD163 Levels*

- Urinary sCD163 (u-sCD163) is a marker for alternatively activated macrophages that has been correlated with kidney macrophage infiltration and active lesions in IgAN. In the TESTING study, a $\geq 50\%$ reduction of u-sCD163 from baseline was associated with a reduced risk of the composite kidney end points¹
- Rapid and sustained reduction of u-sCD163 was observed with sparsentan treatment

CR, creatinine; sCD163, soluble CD163.

^{*1} patient discontinued after week 6 and has been excluded from analysis.

^{1.} Li J, et al., *Kidney Int Rep.* 2024;9:3016-3026.

Kidney Biopsy Single-Cell Nuclear RNA-seq Gene Expression Profile to Define the Impact of Sparsentan on Kidney Cell

Populations

MICHIGAN KIDNEY

CENTER

4538

- These interim findings from the SPARTAN trial show that sparsentan, as a first-line treatment in patients with IgAN, led to rapid and sustained reductions in proteinuria (~70% from baseline)
- Within 24 weeks of starting sparsentan, $\sim\!60\%$ of patients achieved complete remission of proteinuria, a treatment goal recommended in the draft 2024 KDIGO guidelines¹
- Sparsentan was generally well tolerated over 24 weeks of treatment, with no evidence of fluid retention. Safety was consistent with the Phase 3 PROTECT study^{2,3}
- Rapid reductions in urinary sCD163 were observed. The reduction in this biomarker is the first demonstration of sparsentan's anti-inflammatory effect in humans and supports preclinical data that also showed attenuation of immune and proinflammatory signaling with sparsentan^{4,5}
- Further analysis of transcriptomics, kidney biopsies, and additional serum, plasma, and urinary biomarkers is planned to investigate the mechanistic actions of sparsentan and its potential nephroprotective effects

KDIGO, Kidney Disease: Improving Global Outcomes.

^{1.} KDIGO Clinical Practice Guideline for the Management of Immunoglobulin A Nephropathy (IgAN) and Immunoglobulin A Vasculitis (IgAV). https://kdigo.org/wp-content/uploads/2024/08/KDIGO-2024-IgAN-IgAV-Guideline-Public-Review-Draft.pdf (accessed September 2024); 2. Heerspink HJL, et al. *Lancet*. 2023;401(10388):1584-1594; 3. Rovin BH, et al. *Lancet*. 2023;402(10417):2077-2090; 4. Nagasawa H, et al. *Nephrol Dial Transplant*. 2024;39:1494-1503; 5. Reily C, et al. *Am J Physiol Renal Physiol*. 2024;326:F862-F875.

- This study was funded by Travere Therapeutics, Inc.
- Urinary biomarker analysis was provided by:
 - Nadia Nawaz and William Barratt, University of Leicester
- Transcriptomics analysis was provided by:
 - Professor Matthias Kretzler, University of Michigan
 - Francesca Annese, Brad Godfrey, Damian Fermin, Edgar Otto,
 Felix Eichinger, Phil McCown, Sean Eddy, Viji Nair (University of Michigan)
- Medical writing support was provided by Taryn Ralph, PhD, of Nucleus Global, an Inizio Company, in accordance with Good Publication Practice guidelines and was funded by Travere Therapeutics, Inc.
- The authors thank all the patients, families, and investigators who made this study possible

Questions?

